Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
students
eue
Commits
90d1881e
Commit
90d1881e
authored
Aug 07, 2021
by
KangMin An
Browse files
Create & Update: 데이터 분석 결과 저장 과정 갱신.
parent
94720bc6
Changes
5
Show whitespace changes
Inline
Side-by-side
server/src/data_processing/main.py
View file @
90d1881e
...
...
@@ -6,31 +6,41 @@
"""
import
datetime
from
server.src.data_processing.model
import
modeling
import
sys
import
os
import
psycopg2
from
psycopg2.extras
import
Json
import
sys
from
preprocessing
import
preprocess
from
model
import
modeling
# DB 환경 변수
dbconfig
=
{
"host"
:
sys
.
argv
[
1
],
"user"
:
sys
.
argv
[
2
],
"password"
:
sys
.
argv
[
3
],
"database"
:
sys
.
argv
[
4
]}
dbconfig
=
{
"host"
:
sys
.
argv
[
1
],
"port"
:
sys
.
argv
[
2
],
"user"
:
sys
.
argv
[
3
],
"password"
:
sys
.
argv
[
4
],
"database"
:
sys
.
argv
[
5
]}
data_dir
=
os
.
getcwd
()
+
"/src/data_processing/temp.csv"
model_dir
=
os
.
getcwd
()
+
"/src/data_processing/model.h5"
today
=
datetime
.
datetime
.
today
()
year
=
str
(
today
.
year
)
month
=
str
(
today
.
month
)
if
today
.
month
>=
10
else
'0'
+
str
(
today
.
month
)
day
=
str
(
today
.
day
)
if
today
.
day
>=
10
else
'0'
+
str
(
today
.
day
)
collected_at
=
year
+
"-"
+
month
+
"-"
+
day
def
makeDateForm
():
today
=
datetime
.
datetime
.
today
()
year
=
str
(
today
.
year
)
month
=
str
(
today
.
month
)
if
today
.
month
>=
10
else
'0'
+
str
(
today
.
month
)
day
=
str
(
today
.
day
)
if
today
.
day
>=
10
else
'0'
+
str
(
today
.
day
)
collected_at
=
year
+
"-"
+
month
+
"-"
+
day
return
collected_at
# DB 연결
connection
=
psycopg2
.
connect
(
d
atabas
e
=
dbconfig
[
"database"
],
user
=
dbconfig
[
"user"
])
d
bnam
e
=
dbconfig
[
"database"
],
user
=
dbconfig
[
"user"
]
,
password
=
dbconfig
[
"password"
],
host
=
dbconfig
[
"host"
],
port
=
dbconfig
[
"port"
]
)
# DB에 대한 동작을 위한 cursor 생성
cursor
=
connection
.
cursor
()
cursor
.
execute
(
"SELECT email, loc_code, using_aircon FROM Users"
)
cursor
.
execute
(
"SELECT email, loc_code, using_aircon FROM
\"
Users
\"
"
)
users
=
cursor
.
fetchall
()
for
user
in
users
:
...
...
@@ -38,14 +48,35 @@ for user in users:
host
=
{
"email"
:
user
[
0
],
"loc_code"
:
user
[
1
],
"using_aircon"
:
user
[
2
]}
# 데이터 전처리
standard_df
,
mean_df
,
std_df
=
preprocess
(
cursor
,
host
)
standard_df
,
mean_df
,
std_df
=
preprocess
(
cursor
,
host
)
# 데이터 분석
modeling
(
standard_df
)
# 데이터 분석 결과 저장
# cursor.execute("INSERT INTO \"Data_Processings\" (host,collected_at,params) VALUES (%s,%s,%s)",
# (host["email"], collected_at, params))
collected_at
=
makeDateForm
()
model_file
=
open
(
model_dir
,
'rb'
)
model_file_data
=
model_file
.
read
()
params
=
{
"mean"
:
mean_df
.
to_json
(),
"std"
:
std_df
.
to_json
()}
cursor
.
execute
(
"INSERT INTO
\"
Data_Processings
\"
(host,collected_at,model_file,params) VALUES (%s,%s,%s,%s)"
,
(
host
[
"email"
],
collected_at
,
model_file_data
,
Json
(
params
),))
connection
.
commit
()
model_file
.
close
()
if
os
.
path
.
isfile
(
data_dir
):
os
.
remove
(
data_dir
)
if
os
.
path
.
isfile
(
model_dir
):
os
.
remove
(
model_dir
)
# Cursor와 Connection 종료
cursor
.
close
()
...
...
server/src/data_processing/model.py
View file @
90d1881e
from
preprocessing
import
standard_df
import
numpy
as
np
import
os
import
tensorflow
as
tf
def
modeling
(
standard_df
):
n
=
len
(
standard_df
)
n
=
len
(
standard_df
)
test_size
=
int
(
0.3
*
n
)
train
=
standard_df
[:
-
test_size
]
test
=
standard_df
[
-
test_size
:]
def
make_dataset
(
data
,
label
,
window_size
=
24
):
def
make_dataset
(
data
,
label
,
window_size
=
24
):
feature_list
=
[]
label_list
=
[]
for
i
in
range
(
len
(
data
)
-
window_size
):
feature_list
.
append
(
np
.
array
(
data
.
iloc
[
i
:
i
+
window_size
]))
label_list
.
append
(
np
.
array
(
label
.
iloc
[
i
+
window_size
]))
label_list
.
append
(
np
.
array
(
label
.
iloc
[
i
+
window_size
]))
return
np
.
array
(
feature_list
),
np
.
array
(
label_list
)
feature_cols
=
[
'temp_out'
,
'humi_out'
,
'press'
,
'wind_speed'
,
'Day sin'
,
'Day cos'
,
'Year sin'
,
'Year cos'
]
feature_cols
=
[
'temp_out'
,
'humi_out'
,
'press'
,
'wind_speed'
,
'Day sin'
,
'Day cos'
,
'Year sin'
,
'Year cos'
]
label_cols
=
[
'temp_out'
]
train_feature
=
train
[
feature_cols
]
...
...
@@ -26,23 +28,23 @@ def modeling(standard_df):
test_feature
=
test
[
feature_cols
]
test_label
=
test
[
label_cols
]
train_feature
,
train_label
=
make_dataset
(
train_feature
,
train_label
,
window_size
=
6
)
test_feature
,
test_label
=
make_dataset
(
test_feature
,
test_label
,
window_size
=
6
)
train_feature
,
train_label
=
make_dataset
(
train_feature
,
train_label
,
window_size
=
6
)
test_feature
,
test_label
=
make_dataset
(
test_feature
,
test_label
,
window_size
=
6
)
model
=
tf
.
keras
.
Sequential
([
tf
.
keras
.
layers
.
LSTM
(
16
,
return_sequences
=
False
,
input_shape
=
(
6
,
7
)),
input_shape
=
(
6
,
7
)),
tf
.
keras
.
layers
.
Dense
(
1
)
])
model
.
compile
(
loss
=
'mse'
,
optimizer
=
'adam'
)
model
.
fit
(
train_feature
,
train_label
,
epochs
=
50
,
batch_size
=
1000
)
model
.
compile
(
loss
=
'mse'
,
optimizer
=
'adam'
)
# model.fit(train_feature, train_label, epochs=50, batch_size=1000)
model
.
save
(
'/src/dataprocessing/model.h5'
)
model
.
save
(
os
.
getcwd
()
+
'/src/data
_
processing/model.h5'
)
#사용할때
#
사용할때
# new = tf.keras.models.load_model('/src/dataprocessing/model.h5')
server/src/data_processing/preprocessing.py
View file @
90d1881e
...
...
@@ -9,6 +9,8 @@
import
pandas
as
pd
import
datetime
import
numpy
as
np
import
os
def
preprocess
(
cursor
,
host
):
"""
...
...
@@ -18,33 +20,55 @@ def preprocess(cursor, host):
- host : 사용자 정보.
사용자 정보를 바탕으로 외부 날씨와 내부 날씨를 검색해 CSV 파일로 작성합니다.
CSV 파일 생성 후 pandas를 이용해 dataframe으로 만든 뒤, 정규화를 진행합니다.
"""
# # 데이터 수집기 오류로 인해 보류
# cursor.execute(
# "SELECT t2.collected_at as \"date\", temp_out, humi_out, press, wind_speed, temp_in, humi_in, lights FROM"
# + " (SELECT collected_at, temp as temp_out, humi as humi_out,press, wind_speed FROM Weather_Outs WHERE loc_code = %s) t1"
# + " JOIN "
# + " (SELECT collected_at, temp as temp_in, humi as humi_in, lights FROM Weather_Ins WHERE host = %s) t2"
# + " ON t1.collected_at = t2.collected_at", (host["loc_code"], host["email"],))
# results = cursor.fetchall()
# file = open("/src/dataprocessing/temp.csv", 'w')
# # header
# file.write("date,temp_out,humi_out,press,wind_speed,temp_in,humi_in,lights\n")
# for result in results:
# file.write("{0},{1},{2},{3},{4},{5},{6},{7}\n".format(
# result[0], result[1], result[2], result[3], result[4], result[5], result[6], result[7]))
# file.close()
# 사용자의 거주 지역의 실외 데이터 검색
cursor
.
execute
(
"SELECT
t2.
collected_at as
\"
date
\"
, temp_out, humi_out, press, wind_speed
, temp_in, humi_in, lights FROM
"
+
"
(SELECT collected_at, temp as temp_out, humi as humi_out,press, wind_speed FROM Weather_Outs WHERE loc_code = %s) t1
"
+
"
JOIN "
+
" (SELECT collected_at, temp as temp_in, humi as humi_in, lights FROM Weather_Ins WHERE host = %s) t2"
+
" ON t1.collected_at = t2.collected_at"
,
(
host
[
"loc_code"
],
host
[
"email"
],))
"SELECT collected_at as
\"
date
\"
,
temp as
temp_out,
humi as
humi_out, press, wind_speed
"
+
"
From
\"
Weather_Outs
\"
"
+
"
WHERE loc_code = %s"
,
(
host
[
"loc_code"
],)
)
results
=
cursor
.
fetchall
()
file
=
open
(
"/src/dataprocessing/temp.csv"
,
'w'
)
file
=
open
(
os
.
getcwd
()
+
"/src/data
_
processing/temp.csv"
,
'w'
)
# header
file
.
write
(
"date,temp_out,humi_out,press,wind_speed
,temp_in,humi_in,lights
\n
"
)
file
.
write
(
"date,temp_out,humi_out,press,wind_speed
\n
"
)
for
result
in
results
:
file
.
write
(
"{0},{1},{2},{3},{4}
,{5},{6},{7}
\n
"
.
format
(
result
[
0
],
result
[
1
],
result
[
2
],
result
[
3
],
result
[
4
]
,
result
[
5
],
result
[
6
],
result
[
7
]
))
file
.
write
(
"{0},{1},{2},{3},{4}
\n
"
.
format
(
result
[
0
],
result
[
1
],
result
[
2
],
result
[
3
],
result
[
4
]))
file
.
close
()
df
=
pd
.
read_csv
(
"/src/dataprocessing/temp.csv"
)
df
=
pd
.
read_csv
(
os
.
getcwd
()
+
"/src/data_processing/temp.csv"
)
date_time
=
pd
.
to_datetime
(
df
[
'date'
],
format
=
'%Y-%m-%d %H:%M'
)
timestamp_s
=
date_time
.
map
(
datetime
.
datetime
.
timestamp
)
df
=
df
[[
'temp_out'
,
'humi_out'
,
'press'
,
'wind_speed'
]]
df
=
df
[[
'temp_out'
,
'humi_out'
,
'press'
,
'wind_speed'
]]
day
=
24
*
60
*
60
year
=
(
365.2425
)
*
day
...
...
@@ -56,9 +80,9 @@ def preprocess(cursor, host):
def
standard
(
dataframe
):
mean
=
dataframe
.
mean
()
std
=
dataframe
.
std
()
zscore
=
(
dataframe
-
mean
)
/
std
zscore
=
(
dataframe
-
mean
)
/
std
return
zscore
,
mean
,
std
standard_df
,
mean_df
,
std_df
=
standard
(
df
)
standard_df
,
mean_df
,
std_df
=
standard
(
df
)
return
standard_df
,
mean_df
,
std_df
\ No newline at end of file
return
standard_df
,
mean_df
,
std_df
server/src/models/data_processing.js
View file @
90d1881e
...
...
@@ -18,6 +18,9 @@ export class Data_Processing extends Model {
primaryKey
:
true
,
defaultValue
:
Date
.
now
(),
},
model_file
:
{
type
:
DataTypes
.
BLOB
,
},
params
:
{
type
:
DataTypes
.
JSON
,
},
...
...
server/src/schedules.js
View file @
90d1881e
...
...
@@ -26,6 +26,7 @@ const dataProcessingJob = schedule.scheduleJob(rule_dataProcessing, () => {
const
pyprocess
=
spawn
(
"
python
"
,
[
DATA_PROCESSING_DIR
,
envs
.
db
.
host
,
envs
.
db
.
port
,
envs
.
db
.
user
,
envs
.
db
.
password
,
envs
.
db
.
database
,
...
...
@@ -57,11 +58,22 @@ const rules_weather_out_store = {
};
rules_weather_out_store
[
"
00m
"
].
minute
=
0
;
rules_weather_out_store
[
"
00m
"
].
second
=
0
;
rules_weather_out_store
[
"
10m
"
].
minute
=
10
;
rules_weather_out_store
[
"
10m
"
].
second
=
0
;
rules_weather_out_store
[
"
20m
"
].
minute
=
20
;
rules_weather_out_store
[
"
20m
"
].
second
=
0
;
rules_weather_out_store
[
"
30m
"
].
minute
=
30
;
rules_weather_out_store
[
"
30m
"
].
second
=
0
;
rules_weather_out_store
[
"
40m
"
].
minute
=
40
;
rules_weather_out_store
[
"
40m
"
].
second
=
0
;
rules_weather_out_store
[
"
50m
"
].
minute
=
50
;
rules_weather_out_store
[
"
50m
"
].
second
=
0
;
// 임의의 사용자 데이터 등록
const
coordinates
=
[
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment