index.js 26.5 KB
Newer Older
Spark's avatar
Spark committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
'use strict';

Object.defineProperty(exports, '__esModule', {
  value: true
});
exports.default = void 0;

/**
 * Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
 *
 * This source code is licensed under the MIT license found in the
 * LICENSE file in the root directory of this source tree.
 *
 */
// This diff-sequences package implements the linear space variation in
// An O(ND) Difference Algorithm and Its Variations by Eugene W. Myers
// Relationship in notation between Myers paper and this package:
// A is a
// N is aLength, aEnd - aStart, and so on
// x is aIndex, aFirst, aLast, and so on
// B is b
// M is bLength, bEnd - bStart, and so on
// y is bIndex, bFirst, bLast, and so on
// Δ = N - M is negative of baDeltaLength = bLength - aLength
// D is d
// k is kF
// k + Δ is kF = kR - baDeltaLength
// V is aIndexesF or aIndexesR (see comment below about Indexes type)
// index intervals [1, N] and [1, M] are [0, aLength) and [0, bLength)
// starting point in forward direction (0, 0) is (-1, -1)
// starting point in reverse direction (N + 1, M + 1) is (aLength, bLength)
// The “edit graph” for sequences a and b corresponds to items:
// in a on the horizontal axis
// in b on the vertical axis
//
// Given a-coordinate of a point in a diagonal, you can compute b-coordinate.
//
// Forward diagonals kF:
// zero diagonal intersects top left corner
// positive diagonals intersect top edge
// negative diagonals insersect left edge
//
// Reverse diagonals kR:
// zero diagonal intersects bottom right corner
// positive diagonals intersect right edge
// negative diagonals intersect bottom edge
// The graph contains a directed acyclic graph of edges:
// horizontal: delete an item from a
// vertical: insert an item from b
// diagonal: common item in a and b
//
// The algorithm solves dual problems in the graph analogy:
// Find longest common subsequence: path with maximum number of diagonal edges
// Find shortest edit script: path with minimum number of non-diagonal edges
// Input callback function compares items at indexes in the sequences.
// Output callback function receives the number of adjacent items
// and starting indexes of each common subsequence.
// Either original functions or wrapped to swap indexes if graph is transposed.
// Indexes in sequence a of last point of forward or reverse paths in graph.
// Myers algorithm indexes by diagonal k which for negative is bad deopt in V8.
// This package indexes by iF and iR which are greater than or equal to zero.
// and also updates the index arrays in place to cut memory in half.
// kF = 2 * iF - d
// kR = d - 2 * iR
// Division of index intervals in sequences a and b at the middle change.
// Invariant: intervals do not have common items at the start or end.
const pkg = 'diff-sequences'; // for error messages

const NOT_YET_SET = 0; // small int instead of undefined to avoid deopt in V8
// Return the number of common items that follow in forward direction.
// The length of what Myers paper calls a “snake” in a forward path.

const countCommonItemsF = (aIndex, aEnd, bIndex, bEnd, isCommon) => {
  let nCommon = 0;

  while (aIndex < aEnd && bIndex < bEnd && isCommon(aIndex, bIndex)) {
    aIndex += 1;
    bIndex += 1;
    nCommon += 1;
  }

  return nCommon;
}; // Return the number of common items that precede in reverse direction.
// The length of what Myers paper calls a “snake” in a reverse path.

const countCommonItemsR = (aStart, aIndex, bStart, bIndex, isCommon) => {
  let nCommon = 0;

  while (aStart <= aIndex && bStart <= bIndex && isCommon(aIndex, bIndex)) {
    aIndex -= 1;
    bIndex -= 1;
    nCommon += 1;
  }

  return nCommon;
}; // A simple function to extend forward paths from (d - 1) to d changes
// when forward and reverse paths cannot yet overlap.

const extendPathsF = (d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF) => {
  // Unroll the first iteration.
  let iF = 0;
  let kF = -d; // kF = 2 * iF - d

  let aFirst = aIndexesF[iF]; // in first iteration always insert

  let aIndexPrev1 = aFirst; // prev value of [iF - 1] in next iteration

  aIndexesF[iF] += countCommonItemsF(
    aFirst + 1,
    aEnd,
    bF + aFirst - kF + 1,
    bEnd,
    isCommon
  ); // Optimization: skip diagonals in which paths cannot ever overlap.

  const nF = d < iMaxF ? d : iMaxF; // The diagonals kF are odd when d is odd and even when d is even.

  for (iF += 1, kF += 2; iF <= nF; iF += 1, kF += 2) {
    // To get first point of path segment, move one change in forward direction
    // from last point of previous path segment in an adjacent diagonal.
    // In last possible iteration when iF === d and kF === d always delete.
    if (iF !== d && aIndexPrev1 < aIndexesF[iF]) {
      aFirst = aIndexesF[iF]; // vertical to insert from b
    } else {
      aFirst = aIndexPrev1 + 1; // horizontal to delete from a

      if (aEnd <= aFirst) {
        // Optimization: delete moved past right of graph.
        return iF - 1;
      }
    } // To get last point of path segment, move along diagonal of common items.

    aIndexPrev1 = aIndexesF[iF];
    aIndexesF[iF] =
      aFirst +
      countCommonItemsF(aFirst + 1, aEnd, bF + aFirst - kF + 1, bEnd, isCommon);
  }

  return iMaxF;
}; // A simple function to extend reverse paths from (d - 1) to d changes
// when reverse and forward paths cannot yet overlap.

const extendPathsR = (d, aStart, bStart, bR, isCommon, aIndexesR, iMaxR) => {
  // Unroll the first iteration.
  let iR = 0;
  let kR = d; // kR = d - 2 * iR

  let aFirst = aIndexesR[iR]; // in first iteration always insert

  let aIndexPrev1 = aFirst; // prev value of [iR - 1] in next iteration

  aIndexesR[iR] -= countCommonItemsR(
    aStart,
    aFirst - 1,
    bStart,
    bR + aFirst - kR - 1,
    isCommon
  ); // Optimization: skip diagonals in which paths cannot ever overlap.

  const nR = d < iMaxR ? d : iMaxR; // The diagonals kR are odd when d is odd and even when d is even.

  for (iR += 1, kR -= 2; iR <= nR; iR += 1, kR -= 2) {
    // To get first point of path segment, move one change in reverse direction
    // from last point of previous path segment in an adjacent diagonal.
    // In last possible iteration when iR === d and kR === -d always delete.
    if (iR !== d && aIndexesR[iR] < aIndexPrev1) {
      aFirst = aIndexesR[iR]; // vertical to insert from b
    } else {
      aFirst = aIndexPrev1 - 1; // horizontal to delete from a

      if (aFirst < aStart) {
        // Optimization: delete moved past left of graph.
        return iR - 1;
      }
    } // To get last point of path segment, move along diagonal of common items.

    aIndexPrev1 = aIndexesR[iR];
    aIndexesR[iR] =
      aFirst -
      countCommonItemsR(
        aStart,
        aFirst - 1,
        bStart,
        bR + aFirst - kR - 1,
        isCommon
      );
  }

  return iMaxR;
}; // A complete function to extend forward paths from (d - 1) to d changes.
// Return true if a path overlaps reverse path of (d - 1) changes in its diagonal.

const extendOverlappablePathsF = (
  d,
  aStart,
  aEnd,
  bStart,
  bEnd,
  isCommon,
  aIndexesF,
  iMaxF,
  aIndexesR,
  iMaxR,
  division
) => {
  const bF = bStart - aStart; // bIndex = bF + aIndex - kF

  const aLength = aEnd - aStart;
  const bLength = bEnd - bStart;
  const baDeltaLength = bLength - aLength; // kF = kR - baDeltaLength
  // Range of diagonals in which forward and reverse paths might overlap.

  const kMinOverlapF = -baDeltaLength - (d - 1); // -(d - 1) <= kR

  const kMaxOverlapF = -baDeltaLength + (d - 1); // kR <= (d - 1)

  let aIndexPrev1 = NOT_YET_SET; // prev value of [iF - 1] in next iteration
  // Optimization: skip diagonals in which paths cannot ever overlap.

  const nF = d < iMaxF ? d : iMaxF; // The diagonals kF = 2 * iF - d are odd when d is odd and even when d is even.

  for (let iF = 0, kF = -d; iF <= nF; iF += 1, kF += 2) {
    // To get first point of path segment, move one change in forward direction
    // from last point of previous path segment in an adjacent diagonal.
    // In first iteration when iF === 0 and kF === -d always insert.
    // In last possible iteration when iF === d and kF === d always delete.
    const insert = iF === 0 || (iF !== d && aIndexPrev1 < aIndexesF[iF]);
    const aLastPrev = insert ? aIndexesF[iF] : aIndexPrev1;
    const aFirst = insert
      ? aLastPrev // vertical to insert from b
      : aLastPrev + 1; // horizontal to delete from a
    // To get last point of path segment, move along diagonal of common items.

    const bFirst = bF + aFirst - kF;
    const nCommonF = countCommonItemsF(
      aFirst + 1,
      aEnd,
      bFirst + 1,
      bEnd,
      isCommon
    );
    const aLast = aFirst + nCommonF;
    aIndexPrev1 = aIndexesF[iF];
    aIndexesF[iF] = aLast;

    if (kMinOverlapF <= kF && kF <= kMaxOverlapF) {
      // Solve for iR of reverse path with (d - 1) changes in diagonal kF:
      // kR = kF + baDeltaLength
      // kR = (d - 1) - 2 * iR
      const iR = (d - 1 - (kF + baDeltaLength)) / 2; // If this forward path overlaps the reverse path in this diagonal,
      // then this is the middle change of the index intervals.

      if (iR <= iMaxR && aIndexesR[iR] - 1 <= aLast) {
        // Unlike the Myers algorithm which finds only the middle “snake”
        // this package can find two common subsequences per division.
        // Last point of previous path segment is on an adjacent diagonal.
        const bLastPrev = bF + aLastPrev - (insert ? kF + 1 : kF - 1); // Because of invariant that intervals preceding the middle change
        // cannot have common items at the end,
        // move in reverse direction along a diagonal of common items.

        const nCommonR = countCommonItemsR(
          aStart,
          aLastPrev,
          bStart,
          bLastPrev,
          isCommon
        );
        const aIndexPrevFirst = aLastPrev - nCommonR;
        const bIndexPrevFirst = bLastPrev - nCommonR;
        const aEndPreceding = aIndexPrevFirst + 1;
        const bEndPreceding = bIndexPrevFirst + 1;
        division.nChangePreceding = d - 1;

        if (d - 1 === aEndPreceding + bEndPreceding - aStart - bStart) {
          // Optimization: number of preceding changes in forward direction
          // is equal to number of items in preceding interval,
          // therefore it cannot contain any common items.
          division.aEndPreceding = aStart;
          division.bEndPreceding = bStart;
        } else {
          division.aEndPreceding = aEndPreceding;
          division.bEndPreceding = bEndPreceding;
        }

        division.nCommonPreceding = nCommonR;

        if (nCommonR !== 0) {
          division.aCommonPreceding = aEndPreceding;
          division.bCommonPreceding = bEndPreceding;
        }

        division.nCommonFollowing = nCommonF;

        if (nCommonF !== 0) {
          division.aCommonFollowing = aFirst + 1;
          division.bCommonFollowing = bFirst + 1;
        }

        const aStartFollowing = aLast + 1;
        const bStartFollowing = bFirst + nCommonF + 1;
        division.nChangeFollowing = d - 1;

        if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) {
          // Optimization: number of changes in reverse direction
          // is equal to number of items in following interval,
          // therefore it cannot contain any common items.
          division.aStartFollowing = aEnd;
          division.bStartFollowing = bEnd;
        } else {
          division.aStartFollowing = aStartFollowing;
          division.bStartFollowing = bStartFollowing;
        }

        return true;
      }
    }
  }

  return false;
}; // A complete function to extend reverse paths from (d - 1) to d changes.
// Return true if a path overlaps forward path of d changes in its diagonal.

const extendOverlappablePathsR = (
  d,
  aStart,
  aEnd,
  bStart,
  bEnd,
  isCommon,
  aIndexesF,
  iMaxF,
  aIndexesR,
  iMaxR,
  division
) => {
  const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR

  const aLength = aEnd - aStart;
  const bLength = bEnd - bStart;
  const baDeltaLength = bLength - aLength; // kR = kF + baDeltaLength
  // Range of diagonals in which forward and reverse paths might overlap.

  const kMinOverlapR = baDeltaLength - d; // -d <= kF

  const kMaxOverlapR = baDeltaLength + d; // kF <= d

  let aIndexPrev1 = NOT_YET_SET; // prev value of [iR - 1] in next iteration
  // Optimization: skip diagonals in which paths cannot ever overlap.

  const nR = d < iMaxR ? d : iMaxR; // The diagonals kR = d - 2 * iR are odd when d is odd and even when d is even.

  for (let iR = 0, kR = d; iR <= nR; iR += 1, kR -= 2) {
    // To get first point of path segment, move one change in reverse direction
    // from last point of previous path segment in an adjacent diagonal.
    // In first iteration when iR === 0 and kR === d always insert.
    // In last possible iteration when iR === d and kR === -d always delete.
    const insert = iR === 0 || (iR !== d && aIndexesR[iR] < aIndexPrev1);
    const aLastPrev = insert ? aIndexesR[iR] : aIndexPrev1;
    const aFirst = insert
      ? aLastPrev // vertical to insert from b
      : aLastPrev - 1; // horizontal to delete from a
    // To get last point of path segment, move along diagonal of common items.

    const bFirst = bR + aFirst - kR;
    const nCommonR = countCommonItemsR(
      aStart,
      aFirst - 1,
      bStart,
      bFirst - 1,
      isCommon
    );
    const aLast = aFirst - nCommonR;
    aIndexPrev1 = aIndexesR[iR];
    aIndexesR[iR] = aLast;

    if (kMinOverlapR <= kR && kR <= kMaxOverlapR) {
      // Solve for iF of forward path with d changes in diagonal kR:
      // kF = kR - baDeltaLength
      // kF = 2 * iF - d
      const iF = (d + (kR - baDeltaLength)) / 2; // If this reverse path overlaps the forward path in this diagonal,
      // then this is a middle change of the index intervals.

      if (iF <= iMaxF && aLast - 1 <= aIndexesF[iF]) {
        const bLast = bFirst - nCommonR;
        division.nChangePreceding = d;

        if (d === aLast + bLast - aStart - bStart) {
          // Optimization: number of changes in reverse direction
          // is equal to number of items in preceding interval,
          // therefore it cannot contain any common items.
          division.aEndPreceding = aStart;
          division.bEndPreceding = bStart;
        } else {
          division.aEndPreceding = aLast;
          division.bEndPreceding = bLast;
        }

        division.nCommonPreceding = nCommonR;

        if (nCommonR !== 0) {
          // The last point of reverse path segment is start of common subsequence.
          division.aCommonPreceding = aLast;
          division.bCommonPreceding = bLast;
        }

        division.nChangeFollowing = d - 1;

        if (d === 1) {
          // There is no previous path segment.
          division.nCommonFollowing = 0;
          division.aStartFollowing = aEnd;
          division.bStartFollowing = bEnd;
        } else {
          // Unlike the Myers algorithm which finds only the middle “snake”
          // this package can find two common subsequences per division.
          // Last point of previous path segment is on an adjacent diagonal.
          const bLastPrev = bR + aLastPrev - (insert ? kR - 1 : kR + 1); // Because of invariant that intervals following the middle change
          // cannot have common items at the start,
          // move in forward direction along a diagonal of common items.

          const nCommonF = countCommonItemsF(
            aLastPrev,
            aEnd,
            bLastPrev,
            bEnd,
            isCommon
          );
          division.nCommonFollowing = nCommonF;

          if (nCommonF !== 0) {
            // The last point of reverse path segment is start of common subsequence.
            division.aCommonFollowing = aLastPrev;
            division.bCommonFollowing = bLastPrev;
          }

          const aStartFollowing = aLastPrev + nCommonF; // aFirstPrev

          const bStartFollowing = bLastPrev + nCommonF; // bFirstPrev

          if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) {
            // Optimization: number of changes in forward direction
            // is equal to number of items in following interval,
            // therefore it cannot contain any common items.
            division.aStartFollowing = aEnd;
            division.bStartFollowing = bEnd;
          } else {
            division.aStartFollowing = aStartFollowing;
            division.bStartFollowing = bStartFollowing;
          }
        }

        return true;
      }
    }
  }

  return false;
}; // Given index intervals and input function to compare items at indexes,
// divide at the middle change.
//
// DO NOT CALL if start === end, because interval cannot contain common items
// and because this function will throw the “no overlap” error.

const divide = (
  nChange,
  aStart,
  aEnd,
  bStart,
  bEnd,
  isCommon,
  aIndexesF,
  aIndexesR,
  division // output
) => {
  const bF = bStart - aStart; // bIndex = bF + aIndex - kF

  const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR

  const aLength = aEnd - aStart;
  const bLength = bEnd - bStart; // Because graph has square or portrait orientation,
  // length difference is minimum number of items to insert from b.
  // Corresponding forward and reverse diagonals in graph
  // depend on length difference of the sequences:
  // kF = kR - baDeltaLength
  // kR = kF + baDeltaLength

  const baDeltaLength = bLength - aLength; // Optimization: max diagonal in graph intersects corner of shorter side.

  let iMaxF = aLength;
  let iMaxR = aLength; // Initialize no changes yet in forward or reverse direction:

  aIndexesF[0] = aStart - 1; // at open start of interval, outside closed start

  aIndexesR[0] = aEnd; // at open end of interval

  if (baDeltaLength % 2 === 0) {
    // The number of changes in paths is 2 * d if length difference is even.
    const dMin = (nChange || baDeltaLength) / 2;
    const dMax = (aLength + bLength) / 2;

    for (let d = 1; d <= dMax; d += 1) {
      iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);

      if (d < dMin) {
        iMaxR = extendPathsR(d, aStart, bStart, bR, isCommon, aIndexesR, iMaxR);
      } else if (
        // If a reverse path overlaps a forward path in the same diagonal,
        // return a division of the index intervals at the middle change.
        extendOverlappablePathsR(
          d,
          aStart,
          aEnd,
          bStart,
          bEnd,
          isCommon,
          aIndexesF,
          iMaxF,
          aIndexesR,
          iMaxR,
          division
        )
      ) {
        return;
      }
    }
  } else {
    // The number of changes in paths is 2 * d - 1 if length difference is odd.
    const dMin = ((nChange || baDeltaLength) + 1) / 2;
    const dMax = (aLength + bLength + 1) / 2; // Unroll first half iteration so loop extends the relevant pairs of paths.
    // Because of invariant that intervals have no common items at start or end,
    // and limitation not to call divide with empty intervals,
    // therefore it cannot be called if a forward path with one change
    // would overlap a reverse path with no changes, even if dMin === 1.

    let d = 1;
    iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);

    for (d += 1; d <= dMax; d += 1) {
      iMaxR = extendPathsR(
        d - 1,
        aStart,
        bStart,
        bR,
        isCommon,
        aIndexesR,
        iMaxR
      );

      if (d < dMin) {
        iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);
      } else if (
        // If a forward path overlaps a reverse path in the same diagonal,
        // return a division of the index intervals at the middle change.
        extendOverlappablePathsF(
          d,
          aStart,
          aEnd,
          bStart,
          bEnd,
          isCommon,
          aIndexesF,
          iMaxF,
          aIndexesR,
          iMaxR,
          division
        )
      ) {
        return;
      }
    }
  }
  /* istanbul ignore next */

  throw new Error(
    `${pkg}: no overlap aStart=${aStart} aEnd=${aEnd} bStart=${bStart} bEnd=${bEnd}`
  );
}; // Given index intervals and input function to compare items at indexes,
// return by output function the number of adjacent items and starting indexes
// of each common subsequence. Divide and conquer with only linear space.
//
// The index intervals are half open [start, end) like array slice method.
// DO NOT CALL if start === end, because interval cannot contain common items
// and because divide function will throw the “no overlap” error.

const findSubsequences = (
  nChange,
  aStart,
  aEnd,
  bStart,
  bEnd,
  transposed,
  callbacks,
  aIndexesF,
  aIndexesR,
  division // temporary memory, not input nor output
) => {
  if (bEnd - bStart < aEnd - aStart) {
    // Transpose graph so it has portrait instead of landscape orientation.
    // Always compare shorter to longer sequence for consistency and optimization.
    transposed = !transposed;

    if (transposed && callbacks.length === 1) {
      // Lazily wrap callback functions to swap args if graph is transposed.
      const {foundSubsequence, isCommon} = callbacks[0];
      callbacks[1] = {
        foundSubsequence: (nCommon, bCommon, aCommon) => {
          foundSubsequence(nCommon, aCommon, bCommon);
        },
        isCommon: (bIndex, aIndex) => isCommon(aIndex, bIndex)
      };
    }

    const tStart = aStart;
    const tEnd = aEnd;
    aStart = bStart;
    aEnd = bEnd;
    bStart = tStart;
    bEnd = tEnd;
  }

  const {foundSubsequence, isCommon} = callbacks[transposed ? 1 : 0]; // Divide the index intervals at the middle change.

  divide(
    nChange,
    aStart,
    aEnd,
    bStart,
    bEnd,
    isCommon,
    aIndexesF,
    aIndexesR,
    division
  );
  const {
    nChangePreceding,
    aEndPreceding,
    bEndPreceding,
    nCommonPreceding,
    aCommonPreceding,
    bCommonPreceding,
    nCommonFollowing,
    aCommonFollowing,
    bCommonFollowing,
    nChangeFollowing,
    aStartFollowing,
    bStartFollowing
  } = division; // Unless either index interval is empty, they might contain common items.

  if (aStart < aEndPreceding && bStart < bEndPreceding) {
    // Recursely find and return common subsequences preceding the division.
    findSubsequences(
      nChangePreceding,
      aStart,
      aEndPreceding,
      bStart,
      bEndPreceding,
      transposed,
      callbacks,
      aIndexesF,
      aIndexesR,
      division
    );
  } // Return common subsequences that are adjacent to the middle change.

  if (nCommonPreceding !== 0) {
    foundSubsequence(nCommonPreceding, aCommonPreceding, bCommonPreceding);
  }

  if (nCommonFollowing !== 0) {
    foundSubsequence(nCommonFollowing, aCommonFollowing, bCommonFollowing);
  } // Unless either index interval is empty, they might contain common items.

  if (aStartFollowing < aEnd && bStartFollowing < bEnd) {
    // Recursely find and return common subsequences following the division.
    findSubsequences(
      nChangeFollowing,
      aStartFollowing,
      aEnd,
      bStartFollowing,
      bEnd,
      transposed,
      callbacks,
      aIndexesF,
      aIndexesR,
      division
    );
  }
};

const validateLength = (name, arg) => {
  if (typeof arg !== 'number') {
    throw new TypeError(`${pkg}: ${name} typeof ${typeof arg} is not a number`);
  }

  if (!Number.isSafeInteger(arg)) {
    throw new RangeError(`${pkg}: ${name} value ${arg} is not a safe integer`);
  }

  if (arg < 0) {
    throw new RangeError(`${pkg}: ${name} value ${arg} is a negative integer`);
  }
};

const validateCallback = (name, arg) => {
  const type = typeof arg;

  if (type !== 'function') {
    throw new TypeError(`${pkg}: ${name} typeof ${type} is not a function`);
  }
}; // Compare items in two sequences to find a longest common subsequence.
// Given lengths of sequences and input function to compare items at indexes,
// return by output function the number of adjacent items and starting indexes
// of each common subsequence.

var _default = (aLength, bLength, isCommon, foundSubsequence) => {
  validateLength('aLength', aLength);
  validateLength('bLength', bLength);
  validateCallback('isCommon', isCommon);
  validateCallback('foundSubsequence', foundSubsequence); // Count common items from the start in the forward direction.

  const nCommonF = countCommonItemsF(0, aLength, 0, bLength, isCommon);

  if (nCommonF !== 0) {
    foundSubsequence(nCommonF, 0, 0);
  } // Unless both sequences consist of common items only,
  // find common items in the half-trimmed index intervals.

  if (aLength !== nCommonF || bLength !== nCommonF) {
    // Invariant: intervals do not have common items at the start.
    // The start of an index interval is closed like array slice method.
    const aStart = nCommonF;
    const bStart = nCommonF; // Count common items from the end in the reverse direction.

    const nCommonR = countCommonItemsR(
      aStart,
      aLength - 1,
      bStart,
      bLength - 1,
      isCommon
    ); // Invariant: intervals do not have common items at the end.
    // The end of an index interval is open like array slice method.

    const aEnd = aLength - nCommonR;
    const bEnd = bLength - nCommonR; // Unless one sequence consists of common items only,
    // therefore the other trimmed index interval consists of changes only,
    // find common items in the trimmed index intervals.

    const nCommonFR = nCommonF + nCommonR;

    if (aLength !== nCommonFR && bLength !== nCommonFR) {
      const nChange = 0; // number of change items is not yet known

      const transposed = false; // call the original unwrapped functions

      const callbacks = [
        {
          foundSubsequence,
          isCommon
        }
      ]; // Indexes in sequence a of last points in furthest reaching paths
      // from outside the start at top left in the forward direction:

      const aIndexesF = [NOT_YET_SET]; // from the end at bottom right in the reverse direction:

      const aIndexesR = [NOT_YET_SET]; // Initialize one object as output of all calls to divide function.

      const division = {
        aCommonFollowing: NOT_YET_SET,
        aCommonPreceding: NOT_YET_SET,
        aEndPreceding: NOT_YET_SET,
        aStartFollowing: NOT_YET_SET,
        bCommonFollowing: NOT_YET_SET,
        bCommonPreceding: NOT_YET_SET,
        bEndPreceding: NOT_YET_SET,
        bStartFollowing: NOT_YET_SET,
        nChangeFollowing: NOT_YET_SET,
        nChangePreceding: NOT_YET_SET,
        nCommonFollowing: NOT_YET_SET,
        nCommonPreceding: NOT_YET_SET
      }; // Find and return common subsequences in the trimmed index intervals.

      findSubsequences(
        nChange,
        aStart,
        aEnd,
        bStart,
        bEnd,
        transposed,
        callbacks,
        aIndexesF,
        aIndexesR,
        division
      );
    }

    if (nCommonR !== 0) {
      foundSubsequence(nCommonR, aEnd, bEnd);
    }
  }
};

exports.default = _default;